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We prove a limit theorem for a process in a random one-dimensional medium, 
which has been considered before as a model for hopping conduction in a disor- 
dered medium. To the edge between the two integers j and ( j  + 1) a rate 2 i > 0 
is attached. These {2j: j integral} are taken as independent, identically 
distributed random variables, and represent the medium. For given values 2j, 
X(t) is a Markov chain in continuous time which jumps from j to ( j  + 1) and 
from ( j +  1) t o j  at the same rate 2j. We show that in many cases there exists 
normalizing constants y(t) (which tend to ov with t) such that the distribution of 
X(t)/y(t), or more generally of the whole process {X(st)/y(t)}s>~o, converges to a 
limit as t ~ oo. The limit process is continuous and self-similar. 

KEY WORDS:  Random environment; birth and death process; disordered 
one-dimensional system; hopping conductivity; limit theorems; invariance prin- 
ciple. 

1. INTRODUCTION 

We consider the following model: Let {2j} oo<j<~ be a doubly infinite 
sequence of independent identically distributed random variables with values 
in (0, oo). These 2j represent the random environment. {Xt}t> 0 is an integer- 
valued process which denotes the position of a particle on the lattice 2 at 
time t. 2j is the rate at which X t jumps from j to j + 1 or from j + 1 to j ,  
when the environment is fixed. Note that the rate for jumping across the 
interval (j, j + 1) is the same in both directions, so that we should think of 2j 
as a number attached to the interval (j, j + 1). This model was considered 
by many authors.~ It is believed that the model describes various 
physical phenomena such as electrical lines of random conductances and 
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hopping conduction in disordered media. Multidimensional analogs have also 
been considered; see Refs. 2 and 18, and for a continuous space analog, 
Ref. 17. 

In a more formal way, we consider the {)tj} as random variables on a 
probability space (~2', ~ ' ,  P ' )  and denote by 91 = e{2j: - c ~  < j < c~} the e 
field generated by the 2is. Given the Xjs X(.) is a Markov chain whose tran- 
sition rates are determined by 

P { X ( t  + h) = j + 1 I X ( t )  = j ,  91} = )cih + o(h)  

f { X ( t  + h) = j - 1 I X ( t )  = j ,  91} = ~,j 1 h + o(h)  (1) 

P { X ( t  + h) = j I X ( t )  = j ,  9,I} = 1 - ()~j + )~ i -0  h + o(h)  

as h ~ 0, for each j. In the articles mentioned above which deal with the one- 
dimensional case, the asymptotic behavior of the transition probability 
P , ( t )  = P { X  t = n IX0 = 0, 91} is discussed. These probabilities satisfy the 
"randomized master equation" 

dPj  = 2j aPj + ~ , j P j + l  - -  (2j_ + )~)Pj  (2) 
dt - - 1 1 

which is a consequence of (1). A limit theorem for Pn(t)  is usually called a 
"local limit theorem" in the theory of stochastic processes. 

The authors of [ 1 ] classified the possible distributions ~t of 2 o as follows 
(in other articles slightly different conditions are assumed): 

Class (a): distributions whose density p(co) satisfies 

fO CO - lp(CO) de) < 

Class (b): distributions whose density p(co) satisfies 

p(co) -~ constant as co --, 0 

Class (c): distributions whose density p(co) satisfies 

I aco-(1-a)'  0 ~< 09 ~< 1 
P(CO) 

O, otherwise 0 < a < 1 

It is argued in Ref. 1 that the following results should hold: 
For Class (a), 

E '  [Po(t)] ~ Cl t-l/Z, t ~ c~ (3) 
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For  Class (b), 

E '  [Po(t)] ,-- c z lnt , t ~  oo (4) 

For  Class (c), 

E' [Po( t ) ]  ~ " - ~ / " + ~  ~ U 3 t  9 t - ,  oo (5) 

where e 1, c2, c 3 are positive constants and E '  is the expectation with respect 
to the measure P ' ,  the distribution of  the environment.  However,  the authors 
of  Refs. 1 and 4 -8  used a "scaling assumpt ion"  for which no mathemat ical  
justification is given. Kaijser (15) gave a rigorous derivation of  (3) [Class (a)]. 

Anshelevic and Vologodskii (3) considered a birth and death process 
X (u) on {0, I/N, .... ( N -  1)IN, 1} with 0 and 1 as absorbing states. In Ref. 3 
2j denotes the rate at which transitions take place from j /N  to ( j  + 1) /N and 
from ( j +  1)IN toj/N. It is assumed that for some constant e > 0 

2j >/c for all j and 

1 U 1 
lira - -  X? __ exists and is strictly positive. 

N ~  N j~l  ;tj 

Let 3 

p(U)(~, r/, t) 

= tNP{X(N)(N2t) = [Nql fX(X'(0) = [NC]} 

( 0 otherwise 

if N - 1  ~< ~, t/ < 1 

It is shown in Ref. 3 that p(N)(~, r], t) converges (as N ~  oo) to the transition 
density function of  Brownian motion on (0, 1) with absorbing barriers at 0 
and 1. 

In our situation, if E ' {2  ol} < oo - -wh ich  corresponds to Class ( a ) - - i t  is 
also possible to show that 

(E{J,o 1 } / 1/2 
lim v ~ P { X ( t ) = [ ~ V Q j l x ( o ) = o ,  ga}= \ 2x / t~co �9 e x p -  ~ -  E{)],o 1 } 

for almost  all environments.  However,  we have been unable to prove a local 
limit theorem in the other cases. Here we only prove the global limit theorem 
given below. {Y(t)}t>~o is a Brownian motion, and D = D ( [ 0 ,  oo), N) is the 

3 [a] denotes the largest interger ~<a. 



564 Kawazu and Kesten 

class of right continuous functions from [0, oo) to ~ which have left limits 
everywhere. See Ref. 9 for this function space and for the definition of weak 
convergence. [19] and [26] are the standard references for weak convergence 
on infinite intervals. 

Theorem. (i) If 

Ill E'  ~00 < o c  (6) 

then in almost all environments [P'], the process {X.(t)} :=-{(1/n)X(n2t)} 
(conditioned on the environment) converges weakly in D to 
{(E{2o~}) -1/2 V(t)} (as n ~ oo). 

(ii) If there exists a slowly varying function L l(.) such that 

1 ~. 1 ,1 in probability (7) 
nLl(n) i~o 2i 

for some slowly varying function LI(- ), then the process {X,(t)} := 
{(1/n)Y(nZLi(n)t)} converges weakly in D to {Y(t)}. 

(iii) Let 2o I belong to the domain of attraction of a one-sided stable 
distribution of index a, 0 < a < 1, that is, assume that for some slowly 
varying function L2(. ) 

{nl/~L2(n)}_ 1 ~ 1 (8) 

converges in law to a one-sided stable distribution of index a. Then the 
process {X,(t)} := {(1/n)X(n(l+~)/~L2(n)t)} converges weakly in D to a 
continuous process X ,  as n--* oe. X ,  is self-similar with exponent a / (a  + 1). 
(It is defined more explicitly in Section 4.) 

Remarks. (i) Case(i), with E '{1 /20}<oo  was already well 
understood and the results are quite complete [see also Remark (iii) below]. 
The main novelty of our results is for the cases (ii) and (iii). Note that in 
these cases we do not obtain any results which hold in almost all 
environments, but only limit theorems when the randomness of the 
environment is also taken into account. 

(ii) The cases (i)-(iii) correspond to the cases (a)-(c), respectively, of 
Ref. 1. However, our classes are wider than those of Ref. 1. For instance, in 
case (b) listed above 

P >~y - y  y - ~  
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for some constant C > 0. It follows from the generalized weak law of large 
numbers (Ref. 13, Theorem VII.7.2) that in this case (7) holds with 

Ll (n  ) = Clog  n 

More generally, by Ref. 13, Theorem VII.7.2, (7) is equivalent to 

lim E{1/2~ 1/4~ ~< y} --- oo 
yP{1/, o > y} 

Similarly, it follows from the determination of  the domain of  attraction of a 
stable law (Ref. 13, Chap. XVII.5), that (8) holds if and only if 

P ~o ) y ~ Y- '~L3(Y) '  Y ~ oo 

for some slowly varying function L 3. 

(iii) The analog of case (i) in a continuous space setting is already 
treated by Papanicolaou and Varadhan in Ref. 20. 

2. PRELIMINARIES 

Lemma 1. Set 

s ( j )  = 

j 1 
/~ ,~k 1, j > 0  
k-0 

o, j = o  
--1 

- Z 2 ;  1, j < 0  
k=j 

(9) 

Then, conditioned on 2I, S(X( t ) )  is in natural scale, i.e., 

P{S(X( t ) )  hits {a, b} first at a lS(X(O)) : x,  2I} = (b - x) / (b  - a) (10) 

where x, a, b C S(Y), a < x < b, Z is the set of all integers. 

Proof. By a well-known result for birth and death processes (cf. 
Karlin and Taylor  Ref. 16, p. 133), 

P{X( t )  hits {i - 1, i + 1} first at i - 1 IX(0) = i, ~ 

s( i  + 1 ) -  s(i)  
= 2i_ 1 + h  i -- S ( i +  1 ) - - S ( i - -  1 ) '  f o r e v e r y i E  

Thus (9) holds for x, a, b = S(i),  S ( i -  1), S( i  + 1). It is easy now to prove 
(9) by induction on b -  a. II 
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We may assume that the process {S(X(t))} is the process obtained by a 
time change of a Brownian motion {Y(t)} on some probability space 
(I '2" ,~",P") .  (cf. Stone(25)). This time change proceeds as follows. Let 
L(t, x) denote the local time at x of {Y(t)} (cf. Ref. 25 or 10, Chap. V.3), and 
let the measure m be given by 

m(dx) = ~ 6s(i)(dx) 
i 

where 6 x is the Dirac measure at {x}. Set 

V(t) = f L(t, x) m(dx) = ~ L(t, S(i) ) (11) 
i 

Henceforth we define the inverse function of a right continuous function h(x) 
with left limits on the real line by 

h- l (x )  = inf{u : h(u) > t} 

Then {S(X(t))}t)o is equivalent to {Y(V-l(t))}t>o . This follows from the 
following observations: Y(V- 1 ( . ) )  takes on only values in supp(m) = {S (i), 
i C 7/}, because only values of t for which Y( t )E  supp(m) can occur as 
values of v - l ( s )  for some s. When Y(V-1( .))  leaves S(i) it jumps to 
S ( i -  1) or to S( i+  1) and 

P{Y(V- l ( . ) ) jumps  to S(i + 1) before it jumps to 

2i - P{S(X(t)) hits S ( i -  1)[ Y(V 1 ( 0 ) )  = S( i ) ,  ~ }  --  "~i -~ i%i-1 

{S(i - 1), S(i + 1)} first in S(i + 1)l S(X(O)) = i, 91} 

We can also compare the amount of time which Y(V-I(-)) and S(X(.)) 
spend at a point S(i) before jumping to S(i + 1) or S(i - 1). More precisely 
we compare the so-called holding times at S(i), i.e., the time between an 
entry into the state S(i) and the first time thereafter when the process hits 
S(i - 1) or S(i + 1). One can show that this holding time has an exponential 
distribution both for Y(V-I( .))  and for S(X(.)). If Y(.) hits S(i) at t 1 and the 
first hitting time of { S ( i -  1), S(i + 1)} after tl is t2, then the corresponding 
holding time for Y(V- l ( . ) )  is V(t2) - V(t D = L(t  z, S(i)) - -L ( t l ,  S(i)) [since 
L(t, S(j)]  is constant on [t~, t2] for all j g: i). Thus the holding time for 
Y(V-~(.))  reduces to an increment of the local time of Y and 

E"{Y(V-I ( t ) ) s  holding time at S(i)[ Y(V-~(O)) = S(i), 9J} 

= (S(i + 1) - S(i))(S(i) - S(i - 1)) 1 

S( i+  1 ) -  S ( i -  1) ~i§ 
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(cf. Stone (2~) for the first equality and (9) for the second), and by the theory 
of birth and death processes 

1 
E " { Y ( t ) s  holding time at i I X(0)  = i, 9.1} - 2i + 2i_ 1 

Finally, both Y ( V - I ( . ) )  and S (X( . ) )  are right continuous and have left 
limits. Thus these two processes are equivalent. In the sequel we shall 
assume that S(X( t ) )  equals Y ( V - l ( t ) ) .  

3. PREPARATION FOR THE PROOF OF THE THEOREM 

Let D o be the set of  functions on the real line which have left limits and 
are right continuous and are increasing. 4 D o is equipped with the Skorohod 
metric d 0. (D 0, do) is a separable metric space (cf. Billingsleyt9)). 

In this section, we consider the case in which 2ff I belongs to the domain 
of attraction of an a-stable distribution, 0 < a < 1. Thus we assume (8), but 
for simplicity we restrict ourselves to the case L2(x  ) - 1. Define 

S , ( x )  = n 1/"S([nxJ), n = 1, 2,..., - o o  < x < ~ (12) 

Then by results of  Skorohod, (23) {S,} converges weakly to an a-stable 
process {W}. W is defined on some probabil i ty space (~Q0, ~0 ,p0) .  {W} is a 
Do-valued process and W is strictly increasing with probabil i ty 1 on all of  ~.  
Indeed by the I to -L6vy  representation (Ref. 14, Chaps. 1.8-1.12), for x ~> 0 

w(x) = 5' (W(y+)-  w(y-))  
0 < y < x  

where the jumps at location (x, W ( x + ) -  W ( x - ) )  have a Poission distri- 
bution on [0, m )  • [0, oo) with density ds �9 w -~  dw. Since f w -~  dw = ~ ,  
there are infinitely many  jumps  in each open time interval. A similar state- 
ment holds for x < 0. 

By the arguments of  Skorohod (23) and Dudley, (12) there exists a 
probabil i ty space (#2, 5,/~) and Do-valued random variables Sn, and 1~ on 
(/2, ~:,#) such that Sn(.)  converges to I~(.)  in the Skorohod metric on D o for 
a lmost  all co[~t], and S,, and S ,  have the same distribution. Also I~ and W 
have the same distribution. For  co C .O, let us define random masures  
rhn(dx , co) and m . ( d x ,  co) on the real line by 

f f(x) = f f(#.(x, co)) (13) 

4 We say that f is increasing iff(tl)>if(t2) for t 1 > t z. I f f ( t l )>  f(t2) for t 1 > t 2 we call f 
strictly increasing. 
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and 

f f(x) rh,(dx) = f f(lYV(x, co)) dx (14) 

for every func t ionf  C C0(A ) (--the set of continuous functions with compact 
support on the real line). 

Lemma 2. {Y(172l(t))} converges to {y(17,1(t))} in the J1 topology 
almost everywhere in X2 • X2", where 

= I L(t, x) 

and 

P,(t) = I L(t, x) m,(dx) 

Proof. We shall check that for almost all co[/a] the measures rh,(., co) 
and rfi,(.,co) satisfy the conditions (i)-(viii) of Stone's Theorem 1. (2~) 
[Condition (ix) is not needed, since it is only used by Stone for the 
distribution of functionals which we do not consider.] All these conditions 
except (iv) are obvious (since we have k = 0 and a = - m ,  b - - o o  in our 
case). For (iv), we have to check that if x,  E supp(rh,) and x,  ~ x 0, then 
x 0 E supp(rfi,). But since supp(rh,(., co)) consists of the values of ~q,(., co), 
we may assume that x,  = S , (a , ,  co) and that a ,  -~ a 0 for some a 0 E ~ (recall 
that ]S,(t, co)f~ c~ as ] t t~  m). Since S,  converges to W in the Skorohod 
metric, there exist continuous functions ~, on ( -oo ,  oo) which for every 
compact set K in (--oo, oo) satisfy 

and 

lim sup It - ~,(t)l = 0 
n -~o0 I E K  

lim sup IS,(t ) - f f z ( ~ . ( t ) )  I = 0 
n - ~  t E K  

This implies that x o -- lgZ(ao) or W(a o - ) .  Both of these belong to supp(n?,), 
because W belongs to D. Consequently we have 

lim supp(~n) c supp(~,) ,  almost everywhere [/~] 

Thus for almost all co Stone's theorem can be applied and the lemma 
follows. I 
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Set 

T (x )=  l~ - ' (x )  for x C R  (15) 

Since {ff-~} is strictly increasing, iP(x) has continuous increasing paths almost 
everywhere, [p]. This implies that for almost all w[/~], ~q2 ~ converges to 5? 
uniformly on compact intervals. 

Proposition 1. {o~-l(Y(IT~-'))} converges t o  {~(y(~.~. 1))} in the J ,  
topology on D a.e., on .O •  

Proof. By Lemma 2, there exists for almost all (co, w") a continuous 
one-to-one function 0, on [0, oo) such that 

lim sup 10.(t) - t [  ~ 0 
n ~ o o  t ~ K  

and 

lim sup I y(IT~-'(t)) -- Y(V,'(O,(t)))I = 0 
n - ~ o o  t 6 K  

for every compact subset K in [0, ao). This implies 

sup I S~ :(y(IT~-a(t))) -- ~ ( y ( f f ,  '(0,(t))) I 
t E K  

4 sup Iffs - -  T ( Y ( V n - l ( / ) ) ) l  
t e K  

+ sup//~(y(P21(0))- ~(y(tT. l(O.(t))))-~ 0 
t ~ K  

as n -~ oo, since T is continuous on all of R, and if21 ~ T uniformly on 
compact sets with probability 1. 

I.emma 3. Set )~ , ( t )=  iP(Y(V,I(t))). Then {X,(t)} is a self-similar 
process with exponent a/(a + 1). 

ProoL We use the notation X ~  Y to denote that the variables X and 
Y have the same distribution. 

Since I~is an a-stable process, {I~(x)} ~ lt/'/" W(r/x)} for every r/> 0. 
Set 

for ~ />0 

and 
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Then 

Let 
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~rt(X) = /1--1 ~(~] 1/O~X) 

r # )  = r C t ) ,  :, R 

then { Y~} is a Brownian motion and its local time L ~(t, x) equals 

L~(t, x) = y- l  L(y2t, yx) 

Set 

V,(t, ~ = f L,(t, I~(x)) dx = y - i f  L(~2t, yl~(x)) dx 

Then for y > O, t />  0 

(I1, T, W, V.)  a= (y~, T.,  W. ,  Vr(., 1T/n) ) 

and consequently 

{X,(at)} = {7~(Y(I7.1(at)))} 

= n(Y (at, 

Now take 7 = a  -1/(~+1), q = a  -~/(~'+1). By a simple algebraic calculation, 
we see that 

f , (Y r (~ ;  l(at. I7/,))) 

a~/(~ + 1) 7?(Y(V, l(t))) = a ~/C~+ 1) X, ( t )  

So it holds that 

{)~,(at)} ~ {a~'/(~+l)X,(t)} for a > 0 II 

Lemma 4. The process {,~,(t)}t> o of Lemma 3 is continuous almost 
everywhere on s •  

Proof. Fix (o~, co") E s • ~2" such that I,V(., co) is right continuous, 
has left limits, and is strictly increasing on all of N, and such that Y(-, co") is 
everywhere continuous, and such that L(.,  .,co") has the following 
properties: 

(i) (t, x) ~ L(t, x, o3") is everywhere continuous; 

(ii) t -~L(t ,x ,  ~")  is increasing for all x; 
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(iii) I7.@2, co, co") > tT.(rl,  co, co") for all rational intervals (r I , r2) which 
contain a time t with Y(t, co")~R(co), where R(co)= closure of the 
range of fie(., co). 

As remarked at the beginning of this section I~(., co) is almost everywhere 
[~t] strictly increasing. It is also well known that for fixed co (and hence also 
R(co) fixed) L ( . , . ,  co") has the properties (i)-(iii) for almost all co. Indeed (i) 
and (ii) are standard (see Ref. 10, Chap. V. 3), and (iii) follows by con- 
sidering 

T(rl) = inf{t > r I : Y(t, co") E R(co)} 

Then L(T(r 0 + s, Y(T(r~))) - L(T(rl), Y(T(rl))) > 0 for all s > 0 for almost 
all co", by Theorem V. 3.5 in Ref. 10. Then continuity of ( t ,x)-- ,L( t ,x)  
shows 

L(T(r~) + s, y) -- t (T(rl) ,  y) ) 0 

for all y in some neighborhood of Y(T(rl) ) E closure of range of fie. This 
implies V.(T(rl) + s) > v . ( r ( r l )  ). 

We leave it to the reader to fill in the measure theoretic details to show 
that all the above properties hold for almost all pairs (co, co") ~ Y2 X O". For 
an (co, co") with these properties t ~  IT~l(t, co, co ") is everywhere right 
continuous and x ~  7~(x, co) is everywhere continuous. Thus )~.(. ,  co, co") is 
everywhere right continuous and continuous at each continuity point o f / 2 .  1. 
Now let t o be a jump point of V,  1 and let a =  17,1(t0 - ,  co, co"), b =  
I7,1(to, co, co"). Then a < b and ~7.(a, co, co") = 17.(b, co, co") = to. Conse- 
quently Y(t) q~R(co) for a < t < b. Since fie(., co) r D and Y(., co") is 
continuous this can only happen 

{Y(t, co"): a < t < b} c (fie(So - ,  co), fie(So, co)) 

for some jump time s o of fie. But then 

V(a, co"), Y(b, co") ~ [fie(s0 - ,  co), ff'(s0, co)] 

and since fie is strictly increasing 

so = ~(fie(So - ,  co)) ~< ~ (r (a ,  co")), ?(V(b, co")) 

<~ T(rV(so,  co)) = So 

Thus )~. is continuous at t o as well. 
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4. 

and 

Note that 

PROOF OF PART (iii) OF THE THEOREM 

Put 

T(x)~-. W- l(x), x ~ R  

V,(t) = ~L(t, W(x)) dx 

X,  (t) = T(Y(V~ l(t))) 

(16) 

(17) 

(18) 

{S; l(yn(V; l(/)))}t~ 0 ~ I S ;  l (y(~ff  l(t)))}t~ 0 

Proposition 1 now shows that {X.} converges weakly on D to {X,}, since 
{X, } a {/~., }. Lemmas 3 and 4 show that X ,  is self-similar and continuous. 

Also 

Y,(t) = n-1/4 y(nZ/~t) 

is a Brownian motion with local time L,(t, x )=  n-l/~L(nZmt, n l/~x). Set 

v.(t) = ~ Ln(t, S.(x)) dx 

Then we see from (12) and (11) that 

vo( t )  = n -  ~ + 1~/~ v (n2 /o t )  

V,- 1(0 =- n-Zm V- l(n ~+ 1)/~t) 

This implies (see end of Section 2) 

r . ( v ;  1(0) = n-I /~r(n 2/~ v ~  '(t) ) 

= s . (x . ( t ) )  (19) 

Since S.( .)  has a strictly positive jump at each point k/n, k E Z, one has 

1 
IS; l ( r , ( v ;  l(t))) - x,(t)l ~< - -  (2O) 

n 
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5. PROOF OF PART {ii) OF THE THEOREM 

We can apply the same procedure for the proof of part (ii) as used in 
Sections 3 and 4. (12) should now be replaced by 

1 
S.(x) := - -  S([nxJ), 

nLl(n) 
n = l , 2  ..... - o o  < x <  oo (21) 

Now {Sn(x)} converges weakly on D to {x} as n ~ oo. This follows from the 
fact that x ~ S.(x) is increasing, and S.(x) --, x in probability for each fixed 
x. The (deterministic) process {x} takes over the role of {W(x)} in Sections 3 
and 4. Also T(x)= W-~(x)= x in this case, and 

sup I S~-~(x)  - x I -~ 0 in probability 
IxlKK 

for each K as n ~ 0o. Now set 

1 
Y . ( t ) -  nL,(n) Y(tn2L~(n)) 

Vn(t ) = (nL, (n))-I f L (tn 2L ~(n), S.(x) nL l(n)) dx 

= (n2Ll(n)) - '  V(tn2L~(n)) 

Then we can show that {S21(Y.(V21))} converges weakly on D to 
{T-I(Y(V.~))},  with 

V.(t) --- ~ L(t, x) dx = t 

by a repetition of the arguments of Sections 3 and 4. S ince  T(x)=x, 
T-~(Y(V.1))  = Y, while a simple calculation shows 

Yn(V21(t)) = (nL,(n)) -1 Y(V-a(tn2L,(n)) 

= Sn (1X(n2L~(n) t ) )  

[compare (19)]. Finally (20) is replaced by 

S21(Y.(V21(t))) - 1X(n2L l (n ) t )  

Assertion (ii) follows from these observations. 

1 

n 
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6. PROOF OF PART (i) OF THE THEOREM 

When E '{2o 1} < oo, the strong law of large numbers implies 

S.(x) := S([nx] ~ E' -~o x almost everywhere [P'] 

Set 

(22) 

Since the increasing function S.(x) has the continuous strictly increasing 
limit fix, we have in almost all environments 

S.(x) ~ f x  uniformly on compact sets 
(23) 

and S 2 ~(x) --+ f -  ix uniformly on compact sets 

Now set 

Y.(t) = n-lY(n2t), L.(t, x) = n-tL(nZt, nx) 

and 

V.(t) = f L.(t, S.(x)) dx = n -2V(n2t) 

The analogs of (19) and (20) are this time 

Yn(Vnl(t))= Sn (1X(n2 t )  

and 

S ;  ~( Y~( V 2 ~(t))) -- 1 X ( n 2 t )  
1 

n 

One sees directly that, for any fixed environment for which (23) holds 
{S2~(Y.(V;I(t)))} converges weakly in O to {f- lY(ft)} with respect to the 
P"  measure. Indeed IT.(.) is continuous and increasing and (still with the 
environment fixed) has the same distribution with respect to P"  as 
fL( t ,S . (x ) )dx .  Thus, for any environment for which (23) holds, V.(t) 
converges in law to f L(t, f x )dx  = t / f  for each fixed t. This easily implies 
that for any such environment and any K < oo, e > 0 

P"{sup IV.( t ) - t / f l l>/e or sup IV~X( t ) - f l t l~e}~O ( n - , ~ )  
t<K t<K 
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F r o m  this the r equ i red  c o n v e r g e n c e  is immedia te .  A l t e rna t ive ly ,  we cou ld  

have  used T h e o r e m  1 o f  Ref.  25 to p rove  the above  weak  convergence ,  as in 

L e m m a  2 wi th  I ,V (x )=f l x .  Sta t emen t  (i) o f  the t heo rem fo l lows  since 
fl --1 r (~ t )  d f l_ 1/2 r( t) .  

A C K N O W L E D G M E N T  

W e  owe the idea o f  using S tone ' s  t heo rem to p rove  the ma in  theo rem to 

R i c h a r d  Durre t t .  The  same m e t h o d  is also used in the Ph .D.  thesis  o f  Scot t  
Schumacher.(22) 

REFERENCES 

1. S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach, Excitation dynamics in 
random one-dimensional system, Rev. Mod. Phys. 53:175-198 (1981). 

2. V. V. Anshelevic, K. M. Khanin, and Ya. G. Sinai, Symmetric random walks in random 
environments, Commun. Math. Phys. 85:449-470 (1982). 

3. V. V. Anshelevich and A. V. Vologodskii, Laplace operator and random walk on one- 
dimensional nonhomogeneous lattice, J. Stat. Phys. 25:419-430 (1981). 

4. J. Bernasconi and H. U. Beyeler, Some comments on hopping in random one-dimensional 
systems, Phys. Rev. B 21:3745-3747 (1980). 

5. J. Bernasconi, W. R. Schneider, and W. Wyss, Diffusion and hopping conductivity in 
disordered one-dimensional lattice systems, Z. Phys. B 37:175-184 (1980). 

6. J. Bernasconi and W. R. Schneider, Classical hopping conduction in random one- 
dimensional systems: non-universal limit theorems and quasi-localization effects, Phys. 
Rev. Lett. 47:1643-1647 (1981). 

7. J. Bernasconi and W. R. Schneider, Diffusion in one-dimensional lattice system with 
random transfer rates, in Lecture Notes in Physics, No. 153 (Springer-Verlag, Berlin, 
1982), pp. 389-393. 

8. J, Bernasconi and W. R. Schneider, Diffusion in random one-dimensional systems, J. 
Stat. Phys. 30:355-362 (1983). 

9. P. Billingsley, Convergence of Probability Measures (John Wiley & Sons, New York, 
1968). 

10. R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory (Academic 
Press, New York, 1968). 

11. B. Derrida and Y. Pomeau, Classical diffusion in a random chain, Phys. Rev. Lett. 
48:627-630 (1982). 

12. R. M. Dudley, Distances of probability measures and random variables, Ann. Math. 
Statist. 39:1563-1572 (1968). 

13. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. 
(John Wiley & Sons, New York, 1971). 

14. K. Ito, Stochastic processes, Lecture notes, No. 16, Aarhus University (1969). 
15. T. Kaijser, A note on random continued fractions, in Probability and Mathematical 

Statistics: Essays 0l Honor of CarLGustav Esseen, A. Gut and L. Holst, eds. (Uppsala 
University, Uppsala, 1983), pp. 74-83. 

16. S. Karlin and H. M. Taylor, A first course in stochastic processes, 2nd ed. (Academic 
Press, New York, 1975). 



576 Kawazu and Kesten 

17. S. M. Kozlov, Averaging of random operators, Mat. Sborn. 113:302-308 (1980) (tran- 
slated in Math. USSR, Sbornik 37:167-180). 

18. R. K/innemann, The diffusion limit for reversible jump processes on Z a with ergodic 
random bond coefficients, Commun. Math. Phys. 90:27-68 (1983). 

19. T. Lindvall, Weak convergence of probability measures and random functions in the 
function space D[0, ~ ) ,  J. Appl. Prob. 10:109-121 (1973). 

20. G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly 
oscillating random coefficients, Coll. Math. Soc. Jdnos Bolyai, 27, Random Fields, VoL 2 
(North-Holland, Amsterdam, 1981), pp. 835-873. 

21. W. R. Schneider, Hopping transport in disordered one-dimensional lattice systems: 
random walk in a random medium, in Lecture Notes in Physics, No. 173 (Springer 
Verlag, Berlin, 1982), pp. 289-303. 

22. S. Schumacher, Diffusions with random coefficients, Ph.D. thesis, University of 
California, Los Angeles, 1984. 

23. A. V. Skorohod, Limit theorems for stochastic processes, Theory Prob. Appl. 1:262-290 
(1956) (English transl.). 

24. M. J. Stephen and R. Kariotes, Diffusion in a one-dimensional disordered system, Phys. 
Rev. B 26:1917-1925 (1982). 

25. C.J .  Stone, Limit theorems for random walks, birth and death processes and diffusion 
processes, Ill. J. Math. 7:638-660 (1963). 

26. C. Stone, Weak convergence of stochastic processes defined on semi-infinite time 
intervals, Proc. Am. Math. Soc. 14:694-696 (1963). 


